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ABSTRACT: The transformation and metabolism of dietary compounds are affected significantly by gut microbiota. Hence, gut
microbiota are used to improve bionic gastrointestinal tracts. The effect of the cp4-epsps gene on metal bioavailability was proved
by the comparison of the affinity-liposome metal content ratio (AMCR) in transgenic and conventional crops. The bioavailability
of V, Mn, Co, Ga, Ag, Ba, and Pb in roundup ready soybean decreased significantly because the ratio of AMCR (RAMCR) in the
transgenic crop and its corresponding conventional type ranged from 0.36 to 0.69. In roundup ready maize, metal bioavailability
decreased for Li and Cr (i.e., RAMCR was 0.26 and 0.39, respectively) but increased for V, Co, and Pb (i.e., RAMCR was 1.48, 2.07,
and 2.12, respectively). Compared with conventional crops, safe dosage and maximum consumption of roundup ready crops
were 1.59 times for soybean and 0.78 times for maize.
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■ INTRODUCTION

The global area of transgenic crops has continued to increase
impressively since 1996. In 2011, transgenic soybean and maize
were principal transgenic crops, occupying 47% and 32% of
total transgenic crops grown, respectively.1 Agronomically
important traits such as improving quality,2,3 herbicide
tolerance,4−6 and insect resistance7,8 have been introduced
into soybean (Glycine max) and/or maize (Zea mays).
Expression of the gene product (cp4-epsps) renders the
tolerance of soybean and maize to glyphosate, which is the
active ingredient in the roundup family of herbicides. To date,
regulatory authorities in 12 countries have approved the
environmental (commercial) release of at least one of the 30
plant lines expressing the protein cp4-epsps.9

However, the safety of transgenic crops has been a debated
topic since the mid 1990s when the first genetically modified
crop was released on the market.10 The safe assessment of
transgenic crops was focused on the variability of nutrition
constituent,11,12 the fate of transgenic plant DNA,13 and
Cry1AB protein14 in the gastrointestinal tract. Metal
compositions of transgenic crops are now frequently studied,
but most of them were limited to the determination of total
content.15−17 To our best knowledge, the effect of gastro-
intestinal digestion on metal bioavailability in transgenic crops
has not been reported. It is urgent to design valid methods for
metal bioavailability assessment in transgenic crops.
Metal bioavailability in crops has been assessed by animal

experiments18 and in vitro digestion/Caco-2 cell model.19,20

These methods are costly and rather complicated to
perform.21−23 Therefore, a biomimetic digestion and absorp-
tion system is important as a low-cost screening platform for
rapidly identifying metal bioavailability in crops. The crops,
such as soybean and maize, are rich in proteins and
carbohydrates.24,25 Gut microbiota not only provide additional
enzymatic activities involved in the transformation of dietary

compounds26 but also has significantly enriched metabolism of
glycans, amino acids, cholesterol, bile acids, and xenobiotics;
methanogenesis; and 2-methyl-D-erythritol 4-phosphate path-
way-mediated biosynthesis of vitamins and isoprenoids.27,28

Metal ligands in the chyme could be affected by the digestion in
stomach and intestine and gut microbiota metabolism.
Therefore, gut microbiota should be inoculated into dynamic
in vitro digestion models.29 With the coexistence of gastro-
intestinal composition (including inorganics, organics, and
digestive enzymes), intestinal microbiota are used to improve
our previous biomimetic gastrointestinal digestive system.30 As
similar as the biomembrane between the gastrointestinal tract
and blood vessels, the liposome was used as the gastrointestinal
absorption model.30 Affinity-liposome metals were used for
metal bioavailability assessment as the bioassimilated part. On
the basis of the biomimetic gastrointestinal digestive system
and bionic biomembrane absorption model, a new bionic
gastrointestinal tract was reconstituted. The effect of cp4-epsps
on metal bioavailability in the crops was investigated by
RAMCR, i.e., the metal bioavailability ratio between roundup
ready crops and its corresponding conventional crops, at the
same time, both safe dosage and maximum consumption values
of roundup ready maize and soybean were analyzed.

■ MATERIALS AND METHODS
Apparatus. A RE-52 rotator evaporator (Ya Rong Biochemical

Instrument Factory, China), a SHA-B temperature consistent
oscillating water-bath (GuoHua Co., China), a MK-III microwave
digestion system (Sineo Microwave Chemistry Technology Co.,
China), and an Agilent 7500cx series inductively coupled plasma
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mass spectrometer (Agilent Technologies Co., USA) were used for
metal determination. The pH values were measured using a Mettler
Toledo 320-S pH meter (Mettler Toledo Co., China) with a combined
electrode. Milli-Q purified water was obtained from a Milli-Q-purified
water apparatus (Millipore Co., USA). Other equipment was used,
including an 86C ULT ultra low temperature freezer (Thermo
Electron Co., USA) and a ROTINA 420B high speed centrifuge
(Hettich Co., Germany).
Chemicals. The biological chemicals such as α-amylase (1000

units/mg), pepsin (250 units/mg), lipase (200 units/mg), pancreatin
(2000 units/mg), uric acid, mucin, bovine serum albumin, and bile
were purchased from Sigma (St. Louis, MO, USA). Trypton, yeast
extract, and glucose are supplied from Huangkai Microbial Sci. &
Tech. Co. (Guangdong, China) and used for the preparation of
microbiota tryptone−yeast extract−glucose (TYG) medium. Con-
centrated nitric acid, 69−70% (Merck KGaA, Germany), and
hydrogen peroxide, 30% (Xilong Chemical CO., China), were used
for the digestion of crop samples. All other chemicals were of analytical
reagent grade from Shanghai Experiment Reagent Co., China,
including lecithin, D-(+)-cellobiose, D-(+)-maltose, D-(−)-fructose,
Tween 80, and meat extract.
The amounts of gastrointestinal inorganics, organics, and digestive

enzymes, the process and digestion, and the digestion time were
designed on human physiology.31,32 Details of the components of
saliva, gastric juice, duodenal juice, and bile fluid were described
previously by us.30 Milli-Q purified water (18.2 MΩ) was used for all
sample preparations. To avoid metal contamination, all glassware and

plastic ware were washed and kept for 48 h in 10% (v/v) nitric acid
and then rinsed several times with ultrapure water before use.

Sample Preparation. Roundup ready soybean and maize
containing cp4-epsps were provided by Zhangzhou Entry-Exit
Inspection and Quarantine Bureau. Conventional soybean and maize
were purchased from the Zhongmin supermarket in Zhangzhou,
Fujian, China. The sample was washed by purified water three times
and then dried at 80 °C to constant weight. The sample was ground in
an agate mortar after cooling to room temperature.

Gut Microbiota Cultivation. Fecal samples were collected from
three healthy volunteers. Samples were collected, on site, on the
experimental day and were used immediately. Three samples were
combined and then diluted 1:10 (w/v) with phosphate buffered saline
(0.1 mol/L, pH 7.8) and homogenized for 2 min. According to the
reference,33 microbiota supplemented TYG medium was prepared.
Then, 5 mL of supernate was diluted to 500 mL. Above this dilution
(100 μL), they were inoculated to microbiota supplemented TYG
medium at pH 7.8 and cultivated under anaerobic conditions, 37 °C
for 48 h. Then, the intestinal microbiota were obtained and separated
by centrifugation before used. Sterilization of microbiota nutrient
solution, phosphate buffered saline, and instruments were done by
autoclaving at 121 °C for 15 min.

Gastrointestinal Digestion, Gut Metabolism, and Absorp-
tion of the Crops in Bionic Gastrointestinal Tract. One gram of
crop power was digested in a bionic mouth, stomach, and intestine at
37 °C on a gentle oscillation as follows. The bionic gastrointestinal
digestion process was initiated with the addition of 5 mL of saliva and
oscillated for 5 min to simulate chewing. Then, 30 mL of gastric juice

Table 1. Total Metal Contents of Transgenic Soybean, Maize, and Their Counterparts (n = 3)

metals roundup ready soybean (ng/g) conventional soybean (ng/g) roundup ready maize (ng/g) conventional maize (ng/g)

V 23.4 ± 0.7 21.2 ± 0.5 33.9 ± 1.1 17.4 ± 0.7
Cr 172.6 ± 3.5 107.4 ± 3.2 174.6 ± 4.4 143.6 ± 4.3
Mn 31603.8 ± 821.7 28099.9 ± 786.8 13875.2 ± 416.3 6152.6 ± 190.7
Fe 181646.8 ± 9264.0 252608.1 ± 12377.8 161030.5 ± 7568.4 117245.6 ± 5268.3
Co 117.4 ± 4.7 214.5 ± 6.4 63.3 ± 2.8 64.1 ± 3.0
Cu 10238.7 ± 204.8 8315.9 ± 149.7 3959.4 ± 79.2 1603.5 ± 40.1
Zn 13711.2 ± 411.3 12421.8 ± 347.8 24129.2 ± 723.9 12595.5 ± 352.7
Cd 33.0 ± 1.0 35.9 ± 1.1 32.4 ± 1.0 25.3 ± 0.7
Pb 120.1 ± 3.8 111.8 ± 4.0 134.6 ± 4.0 119.1 ± 3.3

Figure 1. Comparison of metal bioavailability in four crops pretreated by three kinds of bionic digestion models (gastric digestion, gastrointestinal
digestion, and gastrointestinal digestion and gut microbiota metabolism).
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was added to the above sample and incubated for 3 h. After gastric
digestion, the chyme was adjusted to pH 7.8 ± 0.2 with 1 mol/L
NaOH, mixed with 30 mL of duodenal juice and 15 mL of bile, and
incubated on a gently rocking shaker for 7 h. During intestinal
digestion, 15 mL of intestinal microbiota was also added into the
chyme for simulating gut microbiota metabolism. Three kinds of
sample pretreatment methods were investigated, including gastric
digestion, gastrointestinal digestion, and gastrointestinal digestion and
gut microbiota metabolism. Blank comparison was also obtained by
using the same digestion procedure without the addition of the crops
in each set of experiment. All chymes were filtered with a 0.45 μm
membrane.
Egg-derived lecithin (0.1 g) was dissolved in chloroform and then

transferred into a rotatory evaporator to evaporate chloroform.
Twenty-five milliliters of chyme was mixed with liposome to form a
homogeneous liposome suspension, frozen at −71 °C in a superlow
freezer for 30 min, and then thawed at 37 °C. The freeze−thaw
process was repeated 5 times to promote metal species distribution in
the liposome−water system. Affinity-liposome metals could be
separated from water-soluble metals by 0.22 μm membrane.
Determination of Metal Concentration in the Crop, Chyme,

Affinity-Liposome Metal, and Water-Soluble Metal in the
Chyme. Sample power (0.2 g) (soybean or maize) was weighed and
transferred into a Teflon digestion vessel. The sample was added to 4.0
mL of concentrated HNO3 and 2.0 mL of H2O2 (30%) and heated in a
water bath at 80 °C until no smoke arose. The above sample or all of
affinity-liposome metal was mixed with 2.0 mL of concentrated HNO3
and 1.0 mL of H2O2 (30%) and decomposed under microwaves for 10
min under a pressure of 15 atm. After cooling to room temperature,
the decomposed solution was diluted to 50 mL and used for metal
determination by ICP-MS.

■ RESULTS AND DISCUSSIONS

Analysis of Total Metal Concentration in Soybean and
Maize. Nine species of trace metals, including essential
elements (V, Cr, Mn, Fe, Co, Cu, and Zn) and toxic elements
(Cd and Pb) were found in transgenic and conventional crops,
and the results are shown in Table 1. Four essential metals
(Mn, Fe, Cu, and Zn) were rich at the level of microgram per
gram in roundup ready soybean and maize. The content of
other metals ranged from 17.4 ng/g to 214.5 ng/g. The content
of most essential metals, including V, Cr, Mn, Cu, and Zn, in
roundup ready soybean and maize was higher than that in
conventional crops. The effect of gene cp4-epsps on metal
concentration varied with the species of crops. Compared to
conventional type crops, metal concentration in roundup ready
crops was changed as follows. The concentration of metals (V,
Mn, and Zn) was increased by 10%−12% for soybean but
increased by 92%−126% for maize. Iron content was decreased
by 28% for soybean, whereas it increased by 37% for maize.
Chromium concentration increased to 172.6 ng/g from 107.4
ng/g for soybean and to 174.6 ng/g from 143.6 ng/g for maize.
The concentration of toxic Cd and Pd varied under ±8% in
soybean and increased by 13% and 28% in maize. After genetic
modification, the unintended variation of metal accumulation
or distribution in soybean and maize might be due to the
difference of metal absorption capacity from soil .34

Effect of Gastrointestinal Digestion and Gut Metab-
olism on Metal Bioavailability. After bionic digestion, the
product is referred to as the chyme. The metal species that
could be released from crops, enter into the gastrointestinal
tract and might be available for gastrointestinal absorption. The
affinity-liposome metals in the chyme were metal complexes
that could be absorbed by the gastrointestinal biomembrane.
Metal bioavailability in the crop was assessed by the ratio of
affinity-liposome metal content to total metal concentration. T
ab
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Roundup ready crops (soybean and maize) and their
conventional types were pretreated by three kinds of bionic
digestion models, i.e., gastric digestion, gastrointestinal
digestion, and gastrointestinal digestion and gut microbiota
metabolism. The influence of the digestion model on certain
metal bioavailability in four kinds of crops was significant, and
the result is shown in Figure 1. Only a fractional species of the
metals could be absorbed by the bionic biomembrane.
Bioenzymes and gut microbiota are part of the principal
dynamics of gastrointestinal digestion and metabolism, and
some metabolites are important metal ligands. After bionic
digestion, the metals in the chyme from maize or soybean were
transformed into their final coordinated metal complexes.
According to the results of metal bioavailability in the chyme
from four crops pretreated with different kinds of bionic
digestion models, intestinal enzyme and gut microbiota could
promote the digestion of metal ligands, and then metal species
were transformed. Metal bioavailability was influenced by the
bionic digestion model. For example, Co bioavailability in
roundup ready and conventional maizes was increased
obviously after gut microbiota metabolism as a result of the
fact that the vitamin B contained in Co is derived from gut
microbiota synthesis.35 Because of the incorporation of gut
microbiota into bionic gastrointestinal digestion, metal
bioavailability could be increased in the range of 10%−610%.
According to the above analysis, gastrointestinal digestion and
gut microbiota metabolism could be a promising bionic
gastrointestinal digestion model, and it could be combined
with the liposome absorption model for the assessment of
metal bioavailability.

Metal Bioavailability in Roundup Ready Soybean,
Maize, and Their Corresponding Conventional Types.
Metal bioavailability in roundup ready soybean, maize, and the
comparison between transgenic and conventional types are
described in Table 2. Low bioavailability for Co (3.6%) and Mn
(3.8%), moderate bioavailability (17.6%−22.5%) for V, Cd, and
Pb, and high bioavailability (30.2%−48.0%) for Cr, Fe, Cu, and
Zn were found in roundup ready soybean. With respect to
roundup ready maize, moderate bioavailability (12.9%−23.3%)
for V, Cr, Mn, and Cd and high bioavailability (40.7%−89.7%)
for other metals were found.
Compared to conventional crops, a significant difference of

metal bioavailability in roundup ready crops was found. The
difference was analyzed by RAMCR, i.e., the ratio of metal
bioavailability in roundup ready crops and that in correspond-
ing conventional species. The bioavailability of all essential
metals except for Zn and toxic metals (Cd and Pb) in roundup
ready soybean was decreased. RAMCR of V and Co was 0.36 and
0.42, respectively. RAMCR of Mn and Pb was 0.61 and 0.66,
respectively. RAMCR of essential metals (Cr, Fe, and Cu) and
toxic metal Cd ranged from 0.80 to 0.87. Only zinc
bioavailability in roundup ready soybean was higher than that
in conventional specie because its RAMCR was 1.14.
Compared to conventional maize, the bioavailability of

essential metals (Cr, Fe, Cu, and Zn) was decreased but
increased for essential metals (V, Mn, and Co) and toxic metals
(Cd and Pb) in roundup ready maize. RAMCR of Cr was 0.39.
RAMCR of essential metals (Mn, Fe, Cu, and Zn) and toxic metal
Cd ranged from 0.80 to 1.18. Bioavailability of essential metals
(V and Co) and toxic metal Pb largely varied, and RAMCR
ranged from 1.48 to 2.12.
The content of phytic acid in roundup ready crops was

higher than in conventional crops,12 which could limit theT
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bioavailability of metals such as iron, zinc, calcium, and
selenium by the formation of indigestible chelates.36,37 The
content variation of L/D amino acids in transgenic crops has
been reported,11 and it could affect metal bioavailability because
L-amino acids as metal ligands are generally susceptible to
enzyme-catalyzed polymerization (translation) to structural and
functional peptides and proteins.38 The unexpected variation of
quality traits in transgenic crops could be attributed to the
expression process of genes, which might be interfered with by
cp4-epsps. Metal bioavailability could be affected by the
coexistence of other metals, for example, Fe contents in cereals
is well correlated with the ratio of Fe/Zn.39 The above factors
may cause the difference in metal bioavailability between
roundup ready crops and their conventional types.
Safe Dosage and Maximum Consumption of Round-

up Ready Soybean and Maize. Deficiency of essential
metals or metal overload is harmful for human health. Hence,
safe dosage and maximum consumption of transgenic soybean
and maize are important for the people who rely on cereal- and
legume-based diets for their major sources of essential
micronutrients. The effect of cp4-epspe on safe dosage and
maximum consumption of transgenic soybean and maize
should be evaluated. Safe dosage of roundup ready soybean
or maize was calculated by the ratio of recommended dietary
allowances (RDAs) or adequate intakes (AIs)35,40 to affinity-
liposome metal content (AMC). The maximum consumption
value for transgenic soybean and maize was calculated by the
ratio of tolerable upper intake levels (Uls)35,40 to AMC. The
results are shown in Table 3. The safe dosage of roundup ready
soybean and maize for males was 92g/d and 118g/d,
respectively. The safe dosage for females was 206g/d for
roundup ready soybean and 266g/d for roundup ready maize.
Maximum consumption of roundup ready soybean and maize
for adults (including males and females) was 516g/d and 665g/
d, respectively. Compared with conventional crops, safe dosage
and maximum consumption of roundup ready crops were 1.59
times for soybean and 0.78 times for maize. Therefore, the
effect of the cp4-epsps gene on metal nutrition and risk varied
with the species of crops.
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